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Abstract—The Internet of Things (loT) will connect billions of devices to the Internet and create a large-scale dynamic and open
environment with high heterogeneity. Application developers and users need to be abstracted from loT infrastructure via scalable
middleware to assure the rapid adoption of loT applications. Event processing systems have the potential to contribute in filling the gap
between the IoT infrastructure and applications layers. Event processing follows a decoupled model of interaction in space, time, and
synchronization. However, the dimension of semantic coupling still exists and poses a challenge to scalability in highly semantically
heterogeneous and dynamic environments such as the loT. In this paper we describe an approach based on loosely coupled producers
and consumers enabled with approximate semantic matching of events. We emphasize a practitioner perspective to loT architectures

for building software that can tackle heterogeneity of loT events.

Index Terms—Internet of Things, distributed applications, event processing, semantic normalization, loT architecture.

1 INTRODUCTION

HE Internet of Things (IoT) builds upon the success
Tstory of Internet technologies to connect physical
objects, or things, to the Internet and enable a plethora
of applications such as assisted driving, augmented
reality, smart and comfortable homes, etc [1]. A basic
requirement to realize the IoT is an infrastructure of
communication solutions and interoperability standards
such as the Constrained Application Protocol (CoAP) by
the Internet Engineering Task Force (IETF) [1]. There
is also a need for middleware that can abstract the
application developers from the underlying technologies
which is crucial to the adoption and evolution of IoT
applications [1].

Event-based technology has played an important role
in the middleware space to enable scalable software
architecture based on its loosely coupled model of inter-
action. Nevertheless, event-based systems assume a high
level of semantic agreement between event producers
and consumers which is challenging for largely hetero-
geneous environments such as smart cities due to the
difficulties to establish common semantic agreements.
Current approaches use granular semantic models such
as ontologies but such models are time consuming to
build and agree upon and thus limit scalability.

This paper extends the event-based architecture to
encompass the semantic normalization functionality
needed in IoT. It guides practitioners to build IoT appli-
cations where exchanged events convey semantics and at
the same time frees parties from rigid agreements. This is
based on: (1) a semantic model based on terms statistical
co-occurence in large textual corpora such as Wikipedia,
(2) thematic tagging of events and subscriptions, and
(3) an approximate probabilistic matcher of events.

2 THE INTERNET OF THINGS AND EVENT-
BASED SYSTEMS

From a high-level architectural perspective IoT can be
divided into three tiers [1]:

1) Sensing and communication technologies which
form the basic infrastructure for IoT to map the
world of things into the world of computationally
processable information. Radio-frequency Identi-
fication (RFID) plays a key role within this tier
where RFID tags are attached to real world things
and RFID readers are responsible for instrumenting
their information into the Internet. Communica-
tion and networking standards such as the IPv6
over Low power Wireless Personal Area Networks
(6LoWPAN) and the CoAP protocols [1] serve this
layer of IoT.

2) Middleware layer which encompasses common
functionalities and abstracts application developers
and users from IoT infrastructure details. Among
the technologies to contribute to this layer are
Service-Oriented Architectures (SOA) [1] and the
Message-Oriented Middleware (MOM). Event pro-
cessing systems are a more generic version of MOM
which support functionalities such as early filtering
of events, spatio-temporal correlation, sequencing,
event enrichment, event aggregation, and complex
event processing.

3) Application layer which builds upon the middle-
ware to provide direct and potentially domain spe-
cific benefits to users. IoT promises new domains of
applications in transportation and logistics, health-
care, smart environments, analytics, personal and
social media, etc.
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Fig. 1: Boundaries to event exchange in (A) a small scale known environment, and (B) a large-scale open environment

such as the Internet of Things.

3 MOTIVATION

Bob works in the town hall planning department of
a smart city. Bob is interested in finding the energy
usage of street lights during peak electricity usage in
different areas. Such information can be detected using
an expression of an Event Processing Language (EPL)
such as Esper’s language [2] as follows:

every a=5StreetLightsEvents(
a.type= ‘energy consumption event’
and a.area.consumptionPeak="true’)

While the sources of required information are avail-
able from the street lights, the semantics of the events
differ from one area to another due to different sensors
manufacturers. For instance, events contain terms such
as ‘energy consumption’, and ‘electricity usage’ to refer to
the same thing. The scenario requires a large set of rules
with high definition and maintenance costs in order to
cover events semantic heterogeneity.

4 CROSS BOUNDARY INFORMATION

EXCHANGE

In a system of systems such as the Internet of Things,
information items such as events need to cross system

boundaries to enable cooperation. Carlile [3] recognizes
two main levels of boundaries that may exist in a given
knowledge exchange scenario:

o Syntactic boundary affects the basic knowledge trans-
fer mechanism between participants. In a broad
sense, it is concerned with data formats, participants
interaction time, and addressing which are expected
to exist in most event-based environments as shown
in Figure 1.

Semantic boundary starts to appear when new event
sources or consumers make some meanings unclear
or ambiguous. Semantic boundaries are inherent in
large-scale, open and heterogeneous environments
such as the IoT as shown in Figure 1. Thus, translat-
ing heterogeneous information items into a common
meaning model that a developer can work with is
crucial. We call this semantic normalization and it
effectively means crossing the semantic boundaries
between systems.

The Internet of Things requires an open mode of
information exchange in which systems boundaries have
to be crossed frequently. This puts openness as an in-
evitable requirement that needs to be met by technolo-
gies used to realize the Internet of Things. Event-based
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URRENT APPROACHES TO SEMANTIC NORMALIZATION are shown in Table 1. In the content-based
approach, event sources and consumers use the same event types, attributes and values as assumed in
traditional content-based publish/subscribe systems such as SIENA [4]. The approach has high semantic
coupling between parties and works well in environments with a low level of data heterogeneity. In
the concept-based approach, participants can use different terms and still expect event matchers to match
them properly thanks to an explicit knowledge representation that encodes semantic relationships between
terms. Examples of knowledge representations are thesauri and ontologies as in S-TOPSS [5] and semantic
pub/sub [6]. Building such knowledge representations is a time consuming process.

TABLE 1: Approaches to Semantic Normalization [7]

Content-based Concept-based | Approximate Thematic Event
[4] [5], [6] Semantic Event Processing [7]
Processing [8], [9]
Matching exact string Boolean approximate approximate semantic
matching semantic semantic matching | matching
matching
Semantic term-level full concept-level loose agreement loose agreement
coupling agreement shared
agreement
Semantics not explicit top-down statistical statistical distributional
ontology-based | distributional semantics
semantics
Domain defining a large defining a indexing a parametrizing the vector
specificity number of domain | domain-specific | domain-specific space of an open domain
cost rules ontology corpus corpus
Effectiveness | 100% depends on the | depends on the depends on the corpus
(F1Score) domains and corpus and the themes tags.
number of Outperforms
concept models non-thematic
approximate approach
Cost defining a large establishing minimal minimal agreement on a
number of rules shared agreement on a large textual corpus and
and establishing agreement on large textual associating good themes
shared agreement | ontologies corpus tags
on terms
Efficiency high medium to high | medium to high medium to high
(throughput)

Freitas et al. proposed an approximate query processing approach for databases based on distributional
semantics [10]. In our previous work [8], [9], we proposed an approximate semantic event processing approach
and showed that the model is suitable when participants agree on some event types, attributes, or values
while performance decreases significantly with an absolute 100% degree of required approximation.

systems have great potential to contribute to realizing
the IoT due to their decoupled nature. Nonetheless,
they do not easily cross semantic boundaries due to
assumptions of semantic agreements on terms within
events and subscriptions.

In the event-based paradigm, event sources fire in-
stantaneous and atomic information items called events.
Event consumers use rules or subscriptions to detect
events and react to them. Events are the only means of
interaction between sources and consumers. This results
in decoupling the production and consumption of events
and thus increasing scalability by “removing explicit
dependencies between the interacting participants” [11].

Event-based systems decouple participants on three di-
mensions [11]:

o Space decoupling suggests that participants do not
need to know each other.

o Time decoupling means that participants do not need
to be active at the same time.

o Synchronization decoupling suggests that event pro-
ducers and consumers are not blocked while pro-
ducing or consuming events.

The space, time, and synchronization decoupling dimen-
sions of Eugster et al. [11] can be seen to contribute to
event transfer across Carlile’s syntactic boundaries.
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Fig. 2: An example thingsonomy for tagging a device’s
events.

However, event-based systems can be at the same time
tightly coupled by the semantics of exchanged events.
Traditional deployments of event systems assume a mu-
tual agreement on event types, attributes, and values
to achieve semantic normalization and that forms an
explicit dependency between participants. For example,
if a smart city event source marks an event with the type
‘parking space occupied’, all event consumers of this event
would have to use this exact event type in their rules.
A new event consumer to the system cannot use a rule
with the term ‘garage spot occupied” to handle such events.

5 REQUIREMENTS

This paper tackles the following requirements to address
event variety in IoT middleware and application layers:

o Low cost for integrating and accessing heteroge-
neous IoT devices. A main task for integration is the
normalization of several heterogeneous data items
into common models.

o Effective and near real-time processing of IoT
events. Processing middleware should be able to
match items of interest with a high detection rate of
true positives and negatives and with low latency.

6 THEMATIC EVENT PROCESSING

‘THINGSONOMIES’

Our thematic event processing approach builds on the
analogy of the wide spread use of social tagging, or
folksonomies [12]. It has been observed that imposing
fixed or agreed-upon top-down taxonomies on users to
describe web content such as images is unfeasible [12].
Instead, bottom-up and user generated tags called folk-
sonomies are used by users to tag and discover content.
Consequently, many social tagging platforms have flour-
ished such as Flicker, Twitter, Delicious, etc.

We suggest associating thematic tags that describe
the themes of types, attributes and values and clarify
their meanings. We call these tags thingsonomies for
things and taxonomies. The hypothesis is that associ-
ating events and subscriptions with extra tags can im-
prove effectiveness and time efficiency in heterogeneous
environments and domain-specific knowledge exchange.

AND

ISTRIBUTIONAL SEMANTICS is based on the

hypothesis that similar and related words
appear in similar contexts. Distributional models
are quite useful for the task of assessing semantic
similarity and relatedness between terms. A se-
mantic measure web service of Figure 3 is a function
that quantifies the similarity/relatedness between
two terms and typically has its values in [0, 1].
Distributional models can be constructed auto-
matically from statistical co-occurrence of words
in a corpus of documents. This model is formalized
as a vector space which provides a computation-
ally efficient framework for calculating similarity
scores and represents a good fit for the require-
ments of loose semantic coupling and real-time
performance for event-based IoT.
A widely used example is the distributional Ex-
plicit Semantic Analysis semantic measure esa
constructed from Wikipedia corpus [13]. In a
nutshell, Wikipedia-based esa builds an index of
words based on the Wikipedia articles they ap-
pear in, hence indexing in Figure 3 [14]. A word
becomes a vector of articles and the more com-
mon articles between two words exist, the more
related the words are. For example, esa(‘parking’,
‘garage’) > esa(‘parking’, ‘energy’) as the formers
appear frequently in common articles. Typically
semantic relatedness between a pair of terms
is measured using cosine distance between the
two vectors representing the two terms. In our
thematic model, esa measure is parametrized also
with the themes tags. Those are used to project
the terms vectors to get a more domain-specific
meaning vectors and then are passed to the dis-
tance function.

Figure 2 shows an example thingsonomy for tagging
energy consumption events coming from a laptop.

Figure 3 illustrates the main components of the the-
matic event processing approach. Thematic events can
cross semantic boundaries as: (1) they free users from a
priori semantic top-down agreements and thus enable
event exchange across such boundaries, and (2) they
carry approximations of events meanings composed of
payloads and thematic tags which when combined carry
less semantic ambiguities. An approximate matcher ex-
ploits the associated thematic tags to improve the quality
of its uncertain matching.

Step 1 to build the IoT architecture enabled with
semantic normalization is to build a semantic model
which enables the system to automatically establish re-
lationships between various terms such as ‘computer’ vs.
“laptop’. Our approach adopts a distributional model of
semantics based on statistical indexing of a large corpus
of textual documents, refer to the sidebar. Such a model
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Fig. 3: Architecture for loosely coupled semantic normalization for Internet of Things software.

is easy to build automatically as shown in [14], and the
main task for the practitioner is the corpus selection. One
can start working with an initial documents corpus, e.g.
Wikipedia, and incrementally revise it to suit the use
cases.

Step 2 is to avail a semantic relatedness measure based
on the built semantic model through a conventional
interface such as REST and JSON [14]. For example, a
request for relatedness between ‘electricity’ and ‘energy’
is invoked through APIL

http:/ /example.com/esa?terml=energy
&term2=electricity

with the result being returned as a JSON object as
follows:

{type: increased energy consumption event,
measurement unit: kilowatt hour,
device: computer, office: room 112}

An example of thematic tags for this event are:

i {computer, appliances, building, energy}

Step 4 is for subscribers to associate their subscriptions
with thematic tags. We use a language that introduces
the tilde ~ operator which signifies that the user wants
the matcher to match the term used or any term seman-
tically similar to it. A subscription for increased energy
consumption can be represented as follows:

{type= increased energy usage event~,
device~= laptop~, office= room 112}

{“relatedness” : 0.154}

Such a result makes sense only in comparison with the
relatedness of other terms such that ‘electricity” is closer
to ‘energy’ than to ‘office’ for instance.

Step 3 is for publishers to accompany their events with
a set of thematic tags at the data collector. Such tags
shall represent approximately the domain and meaning
of the terms used to describe the event attributes and
values. Let an event of an increased energy consumption
be represented as follows:

Example thematic tags are:

l {power, computers} I

Step 5 is the responsibility of the system to normalize
events and match them to the suitable subscriptions. The
example event and subscription do not use exactly the
same terms to describe the type or the device, hence
‘energy consumption’ vs. ‘energy usage’, and ‘computer’ vs.
‘laptop’. Nevertheless, the event should not be considered
as a negative match to the subscription. For this reason,
our model employs a probabilistic matcher which uses a
measure to estimate semantic similarity and relatedness



VALUATION of the normalization quality can be achieved by establishing a gold standard set of
E subscriptions and events of known ground truth of true matchings. For each subscription, the set of
relevant events is identified. Precision represents the ratio of correctly matched events versus all the matched
events. Recall represents the ratio of correctly matched events versus all the relevant ones. The effectiveness
of the built software can be measured by precision, recall, and a derivative measure that combines both
in one number such as the F;Score. Efficiency can be measured using event throughput which represents the
amount of processed events per a time unit in the IoT middleware layer from the sensors to the applications.
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Fig. 4: Evaluating IoT semantic normalization: effectiveness (left) and time efficiency (right) [7].

Test events and subscriptions sets shall be chosen based on the use cases. For example, in [7] we have
synthesized a set of around 15,000 events of up to 10 attribute-value pair per event, and around 100
approximate subscriptions from real world smart city deployments in Europe such as the SmartSantander
project [15] which employs a set of sensors to monitor temperature, noise, traffic, parking, and others.
Seed events are expanded into the final set, and ground truth matching and thematic tags were generated.
Figure 4 illustrates the resulting effectiveness and efficiency of the approximate matcher working with
Wikipedia-based esa. Each cell in the figure shows the result that corresponds to a combination of numbers
of thematic tags associated with events (the X-axis), and subscriptions (the Y-axis).

Results show that the thematic approach is limited when users can provide only a small number of tags for
subscriptions, and when hard real-time deadlines are required. Otherwise, results suggest that the use of
less terms to describe events, around 2 — 7, and more to describe subscriptions, around 2 — 15, can achieve
a good matching quality, up to 85%, and throughput, up to 800 events/sec, together with less error rates.
That is concentrated in the middle left part of squares in Figure 3 (more red cells).

Results also show that the approach is scalable to highly semantically heterogeneous environments due to
the lightweight amount of tagging required and the low number of approximate subscriptions which is
about 100 subscriptions. That would cost users an equivalence of around 48,000 exact subscription rules.

between various terms. Functionally, it tries to establish
possible mappings between subscription predicates and
event tuples. For example, the most probable mapping
of previous examples is described as follows:

o* ={(type=increased energy consumption event
+ typeiincreased energy usage event),
(device~ = laptop~ <+ device:computer),
(office = room 112 < office: room 112)}

Step 6 represents the return of events matching a
subscription to its initiator. The matcher establishes prob-
abilistic matching and as a result forwards the normal-
ized event along with an uncertainty value that reflects
the amount of semantic normalization that has been

conducted all the way from publishers to subscribers.

To evaluate the proposed architecture, a framework
conceived from the evaluation of Information Retrieval
search engines is used. The framework is built upon the
concepts of matching precision, recall, and F;Score along
with throughput as discussed in the top sidebar.

7 DESIGN CONSIDERATIONS

The degree of approximation is the number of tilde ~ op-
erators used in subscriptions. It can be used to quantify
the approximation done by the engine during semantic
normalization. The proposed approach works better and
needs less tags with lower degrees of approximations as
exact string matching can help filter many events. For



example, in some applications several agreements can
be assumed such as units of measurements as in smart
grids.

Besides, the use of semantic relatedness services in-
stead of exact string comparison is costly from a time
performance point of view. Thus, applications with hard
real-time deadlines such as some security systems may
not be the ideal applications. It could be better to afford
the cost of establishing semantic agreements and use a
traditional publish/subscribe system rather than leaving
semantic approximation to the matcher.

8 CONCLUSIONS AND FUTURE WORK

We have discussed the challenge of building IoT soft-
ware that overcomes event semantic variety in a loosely
coupled manner. We highlighted the practical aspects for
building IoT software via thingsonomies for semantic
normalization in an event-based middleware. Future
work for practitioners is to test the suitability of various
corpora with respect to each domain such as energy,
traffic, etc. It also includes the use of cloud computing
and parallel processing to improve efficiency within
applications that have real-time constraints.
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