
Towards Unified and Native Enrichment in Event
Processing Systems

Souleiman Hasan
Digital Enterprise Research

Institute, National University of
Ireland, Galway

souleiman.hasan@deri.org

Sean O’Riain
Digital Enterprise Research

Institute, National University of
Ireland, Galway

sean.oriain@deri.org

Edward Curry
Digital Enterprise Research

Institute, National University of
Ireland, Galway

ed.curry@deri.org

ABSTRACT
Events are encapsulated pieces of information that flow from one
event agent to another. In order to process an event, additional
information that is external to the event is often needed. This is
achieved using a process called event enrichment. Current
approaches to event enrichment are external to event processing
engines and are handled by specialized agents. Within large-scale
environments with high heterogeneity among events, the
enrichment process may become difficult to maintain. This paper
examines event enrichment in terms of information completeness
and presents a unified model for event enrichment that takes place
natively within the event processing engine. The paper describes
the requirements of event enrichment and highlights its challenges
such as finding enrichment sources, retrieval of information items,
finding complementary information and its fusion with events. It
then details an instantiation of the model using Semantic Web and
Linked Data technologies. Enrichment is realised by dynamically
guiding a spreading activation algorithm in a Linked Data graph.
Multiple spreading activation strategies have been evaluated on a
set of Wikipedia events and experimentation shows the viability
of the approach.

Categories and Subject Descriptors
H.3.3. [Information Storage and Retrieval]: Information Search
and Retrieval---information filtering.

General Terms
Algorithms, Experimentation, Languages, Theory.

Keywords
Information Completeness; Event Enrichment; Event Processing;
Linked Data; Spreading Activation.

1. INTRODUCTION
Event-based technology is becoming more widely needed with
the rise of new applications ranging from Smart Homes to Smart
Cities and the Internet-of-Things [1]. Event-based systems enable
a decoupled mode of interaction between participants which
makes it suitable for large-scale and distributed environments

such as sensor networks and mobile environment [11]. There are
estimates that by the end of 2020 fifty billion devices will be
connected to mobile networks [20] which would push event-based
technology to its limits.

While the basic information item in an event-based system is an
event, it is not uncommon that normal users require the system to
handle information that is not encoded in the event. Such
information typically comes from legacy databases or web data
sources. This causes an information completeness problem for
events to be sufficient for tasks such as subscription matching.
One current solution to the information completeness issue is to
develop external, static and dedicated event processing agents that
retrieve information from legacy data sources and enrich the event
before it is propagated for further processing. For example, an
energy consumption event is generated by a smart electric heater
containing the heater’s serial number. An enricher retrieves
information about the room and floor of the heater from a
building management system database and adds it to the event
which can then be considered when matching users’ interests in
high energy consumption events from that specific room or floor.

Future applications of event-based systems are large-scale
applications such as the Internet-of-Things where the number of
tasks that require information not included in events increases. In
these environments the enrichment agents can quickly become
difficult to develop and maintain. We argue that the problem lies
in the approach taken in current event-based middleware where an
event is considered as a closed world. For example, if a
subscription tests a specific property that is not included in the
event, then that is considered a negative match by default. No
attempt is made to try and complement information in the event
before judging on positive or negative matching.

The need to complement incomplete events has been recognized
by the event processing community. Hinze et al. [15] states that
“event enrichment calls for an understanding not only of the
events but also for the external sources of information”. Hohpe
and Woolf [16] dedicates a set of patterns such as message
translator, content enricher, and aggregator to address several
problems that can be classified under event incompleteness.
Teymourian et al. [25] investigates the improvement of
expressiveness and flexibility of complex event processing
systems via the usage of background knowledge about events and
their relations to other concepts in the application domain.

Patterns by Hohpe and Woolf [16] reflect the current state-of-the-
art and practice in the design of event processing networks where
dedicated agents are assigned with well-defined tasks to overcome
some incompleteness issues. For example, they propose the use of
dedicated event enrichment agents to access a database and
retrieve necessary information that is added to events before they

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DEBS’13, June 29-July 3, 2013, Arlington, Texas, USA.
Copyright © ACM 978-1-4503-1758-0/13/06...$15.00.

propagate to consumers. However, such agents are ad-hoc and
tailored to the particular situations they are designed for. That
contradicts with the event processing vision detailed by Etzion
and Niblett [10] which calls for a unified and declarative way to
process events. Enrichment agents are non-native to the paradigm,
and as event processing systems scale out to large and highly
heterogeneous environments, the maintenance of such enrichment
agents becomes difficult.

Other related work focuses on the fusion of background
knowledge with events using a query answering paradigm that
spans events and background knowledge. However, such
approaches make some assumptions that may not hold in many
situations. For example, the work of Teymourian et al. [25]
assumes that the background knowledge and events have the same
data format and semantics, and that the knowledge base is
accessible via a query service making the federation of the query
feasible.

We think that in order to make advancement with respect to the
event incompleteness problem, it is crucial to deal with the
abstract characteristics of the problem and to integrate it into the
event processing paradigm so it becomes a native component of
event processing engines. Event enrichment can be done closer to
the producer’s side or closer to the consumer’s side. In this paper
we explore enrichment which is unified with consumption logic
(matching) as consumers can better judge the content
completeness of events with respect to their information needs.
The contribution of this paper is threefold:

 A unified and native model of event enrichment is proposed
along with its formalism.

 An instantiation of the model based on dereferenceable
Linked Data and spreading activation is presented.

 An evaluation framework for event enrichment based on
assessment of event completeness and enrichment precision
is discussed.

The rest of this paper is organized as follows: Section 2 motivates
the problem of information incompleteness in event processing
systems while Section 3 outlines the dimensions of information
incompleteness and the challenges for event enrichment. Section
4 explains the main concepts of the proposed model, its formalism
and some potential implications. Section 5 details an instantiation
of the proposed model based on Linked Data and spreading
activation. Experiment and evaluation are explained in Section 6
and Section 7 summarizes related work. The paper concludes and
discusses some potential future directions in Section 8.

2. MOTIVATIONAL SCENARIO
A sustainability officer is an employee who is responsible for
assuring the company commitment to its social responsibility
programs. For example, the sustainability officer would be
interested in situations where energy consumption, and hence CO2
emissions, of a particular department or building is excessive with
regard to company or international standards [7,13].

In order for the sustainability officer to do the job, an event-based
middleware is set up. Various energy-related sensors and real-
time sources are instrumented so events flow into the middleware.
Events in such a scenario are encapsulated with minimal
information recording for instance a device name and the amount
of energy used. An example attribute-value event describing the
energy consumption of a heater is shown in Example 1.

Example 1: An Energy Consumption Event

{(type, "energy consumption”),

(device, "heater1"),

(consumption, "high")}

Non-technical users such as the sustainability officer tend to
include higher level and business concepts and checks in their
subscriptions to events. Examples of these are the “room” or the
“floor” where the event was originated, or the “business unit” or
“project” with which the device is associated. One example
subscription is shown in Example 2.

Example 2: A Subscription for High Energy Consumption

{(type= "energy consumption")

and (floor= "second floor")

and (consumption="high")}

The events do not have information about the “floor” to answer
the subscription in Example 2. Thus, in order to meet information
requirement for this subscription, additional information sources
in the enterprise such as data about the building would need to be
exploited. Dedicated software agents need to be developed to
enrich events with sufficient information. A large number of
subscriptions may require dedicated enrichment agents. As a
result, enrichment routines can become a burden to develop and
maintain.

3. EVENT ENRICHMENT
The event-based interaction paradigm is based on the principle of
decoupling the various parties which are involved in the
interaction, namely event producers and consumers. The main
advantage of decoupling the production and consumption of
events is an increased scalability by “removing explicit
dependencies between the interacting participants” [11]. The three
common dimensions of decoupling between event producers and
consumers are space, time and synchronization [11]. Thus, the
only feasible way of interaction between participants becomes
confined to exchanging events which carry payloads of
information, making such a system event centric.

While the inherent feature of decoupling has its own virtues, it
introduces other challenges in the event-based paradigm. An
important one is the fact that event producers should have
minimal assumptions on the information needs of event
consumers. As a result, the content of an event payload becomes
independent of consumers’ needs. This can lead to information
incompleteness on the consumers’ side because there is not
enough information in the event to process it.

If an event consumer ignores the concerns of information
incompleteness and tries to conduct matching between its
subscription and events, this may result in a high false positives or
false negatives rate due to lack of relevant information in the
events needed for the correct matching result. Thus, the
consideration of the various dimensions of incompleteness
becomes crucial to decrease the number of false
positives/negatives in the matching process.

3.1 Dimensions of Incompleteness
Event incompleteness is a relative concept; it does not only
depend on the event but also on the event consumption logic that
is implemented by an event consumer. Event consumers may vary
from simple User Interface agents to complex event processing

engines. In order to simplify the discussion on event consumers,
we limit discussion to content-based matchers of single events
using a subscription language to match events. These are common
in the publish/subscribe paradigm and are usually implemented
using a message-oriented middleware [9]. However,
generalization to other types of event consumers is possible in
light of the formalism we present in Section 4.1.

Given a particular event consumption logic, event incompleteness
has a broad set of orthogonal dimensions. We have defined the
dimensions based on an analysis of the enterprise integration
patterns of Hohpe and Woolf [16]. This analysis produces general
dimensions of incompleteness as follows:

1. Event Format: The event lacks the syntactical structure that
can be processed by an event consumer. For example, let an
event be as follows:

“energy consumption of the heater in the second floor is
high”

This event is in plain text language syntax and thus cannot be
processed by an event consumer which uses the subscription
from Example 2. This is because the subscription expects
attribute-value syntax not available in the event.

2. Event Semantics: The event lacks references to an
interpretation scheme that can be used by an event consumer
to understand what the event payload really means. For
example, let an event be as follows:

{“energy consumption”, “second floor”, “high”}

This event is in tuple structure. It lacks the reference scheme
according to which an event consumer which uses the
subscription from Example 2 can interpret the actual
indication of the term “high”.

3. Complementary Background Knowledge: The event lacks
the amount of information required by an event consumer,
and the complementary information resides in an enrichment
source. For example, let an event be as follows:

{(type, "energy consumption”), (device, "heater1"),
(consumption, "high")}

This event cannot be processed by an event consumer which
uses the subscription from Example 2 because the event
lacks any information about the “floor” in which the event
occurred. This complementary information is likely to exist
in a building management system database which has a fact
such as {(“heater1”, exists_in, “second floor”)}.

4. Complementary Transformation: The event lacks the
amount of information required by the event consumer, and
the complementary information can be obtained via a
reasoning process over the event. For example, let an event
be as follows:

{(type, "energy consumption"), (device, "heater1"),
(watt_hour, "1500")}

Let the event consumer use the following subscription:

{(type="energy consumption") and (device="heater1") and
(kilowatt_hour= "1.5")}

The event lacks the property “kilowatt_hour” and thus is
incomplete with respect to the consumer. However, this
information can be obtained by a calculation on the actual
event itself using a reasoning rule such as: kilowatt_hour=
watt_hour/1000.

5. Temporal Segmentation: A single event does not have the
amount of information required by an event consumer, and
the complementary information resides in other events which
occurred previously or are going to occur in the future. For
example, it is common to have three-phase electricity power
feeds to buildings. Clamp-on power monitoring sensors are
usually installed on every 1-phase cable entering the
building. This results in three events arriving at a specified
rate one after the other:

{(type, "power consumption"), (consumer, "building"),
(watt_phase1, "3000")}

{(type, "power consumption"), (consumer, "building"),
(watt_phase2, "2800")}

{(type, "power consumption"), (consumer, "building"),
(watt_phase3, "3200")}

Let an event consumer use a subscription such as the
following:

{(type= "power consumption") and (consumer ="building")
and (watt_all_phases="9000")}

The consumer finds that all the events lack the knowledge
about the three-phases power consumption. However, such
information can be obtained by temporally aggregating three
events from all the phases in order to get the overall power
consumption that can be processed by the consumer.

3.2 Challenges for Event Enrichment
The term event enrichment is used in this paper to refer to any
process that is done on events in order to overcome fully or
partially an event incompleteness problem that spans one or more
of the event incompleteness dimensions explained in Section 3.1.

For the sake of simplicity throughout the rest of this paper, we
leave the temporal segmentation dimension to future work.
Reasoning for complementary transformation over events is
assumed to be done beforehand with the result stored in a
knowledge base. That turns the complementary transformation
dimension into the complementary background knowledge
dimension. Given the final set of incompleteness dimensions, four
fundamental challenges are recognized:

1. Determination of the Enrichment Source (ES)

The first challenge to face event enrichment is the decision on
which enrichment source(s) to use. The challenge comes from the
fact that event producers and consumers are decoupled and
potentially have various perspectives of where complementary
information for an event may exist. Determining the enrichment
source may be statically stated by the event producer or consumer
making this challenge easy to overcome. However, if sources are
not known beforehand then a source discovery process is needed.
Some possible enrichment sources include:

 Wikis: The Wikipedia online corpus for instance
“http://en.wikipedia.org/wiki/” can be considered as a
textual domain-agnostic enrichment source.

 Relational Databases: An example is a Building
Management System (BMS) relational database described by
the connection string “Server=www.example.com\rdbms;
Database=BMS-DB;”

 Linked Data [2]: The DBpedia corpus for example can be
addressed by its domain “http://dbpedia.org/resource/”.

2. Retrieval of Information Items from the
enrichment Source

The access and retrieval mechanism poses a challenge to the
enrichment process as it affects its ability to retrieve atomic
information items from the enrichment source. Retrieval of
information items can be quite challenging if network transfer has
reliability issues or if the retrieval speed forms a bottleneck in the
system. The exact retrieval mechanism will depend on the
selected enrichment source. Some example retrieval mechanisms
include:

 Wikis: A retrieval mechanism for Wikipedia is a search
operation against its search API followed by an HTTP GET
request to get a Wikipedia article as the information item.

 Relational Databases: A retrieval mechanism for a
relational database is a SQL query against a query interface,
with the retrieved rows as the information items.

 Linked Data: A retrieval mechanism for the DBpedia corpus
for instance is looking up (dereferencing) URIs [3] of the
resources, with the RDF [17] graphs of these URIs being the
information items retrieved.

3. Finding Complementary Information for an Event
in the Enrichment Source

The ability of the enrichment process to retrieve atomic
information items from an enrichment source is faced with the
challenge to determine which of the information items can
complement an event and should be retrieved. Several ways to
find complementary information are:

 Wikis: To find complementary information in the Wikipedia
corpus, articles related to a term in the event can be searched
and then links from these articles are followed one step deep
and ultimately all the resulting articles are retrieved.

 Relational Databases: To find complementary information
in a relational database, one can formulate a SQL query with
some specific primary keys coming from the event.

 Linked Data: To find complementary information in the
DBpedia corpus, a spreading activation [5] of URIs can be
conducted starting from seed URIs and following the links in
the data cloud with some termination conditions.

4. Fusion of Complementary Information with the
Event

The final challenge is integrating and fusing the complementary
information items with the event. This challenge stems from the
several formats and semantics of data models that are used by the
enrichment source and by the event. Multiple instances of fusion
are presented in Example 3.

Example 3: Fusion Methods

Let an event be the attribute-value map

{(type, “energy consumption”),

(device, “heater1”),

(consumption, “high”)}.

Let the enrichment source be a relational database with the
relations <heater, room> and <room, floor> containing
respectively the rows:

<heater1, room123>

<room123, second floor>

One possible fusion method is to add two attribute-value pairs to
the event so it becomes:

{(type, “energy consumption”),

(device, “heater1”),

(consumption, “high”),

(room, “room123”),

(floor, “second floor”)}

Another fusion method is to add one attribute value pair which
contains the location to the event so it becomes:

{(type, “energy consumption”),

(device, “heater1”),

(consumption, “high”),

(location, “room123, second floor”)}.

4. UNIFIED AND NATIVE ENRICHMENT
MODEL
The key pillar of the proposed model is the recognition of
enrichment as a core task of event processing engines. In addition,
the enrichment behaviour of an event processing engine can be
dictated to the engine using a uniform and declarative mechanism.
The cornerstone of the model is the concept of an enrichment
element that is a declarative specification for the engine to enrich
events with complementary information items.

The model proposes that the enrichment element is described
using a set of declarative language constructs similar to the ones
used currently for matching purposes. In order to systematically
characterize the language constructs needed for the enrichment
element, we propose four language clauses that are mapped to the
four enrichment challenges as follows:

1. ENRICH FROM clause which allows the engine to
determine the enrichment source(s) explicitly.

2. RETRIEVE BY clause which allows the engine to
determine the retrieval mechanism for atomic information
items.

3. FIND BY clause which specifies the approach which would
dictate the retrieval of a subset of information items from the
enrichment source(s) that can complement the event.

4. FUSE BY clause which defines the fusion approach to
integrate retrieved complementary information with the
incomplete event.

The next issue is to determine who is responsible for defining the
enrichment elements. Reviewing the clauses of an enrichment
element shows that some of these can be specified by the event
producer and/or the event consumer. Specifically, the enrichment
source and retrieval mechanism can be defined by the producer
who may know them at the time of producing the event.

The model proposes that all the enrichment clauses are described
by the event consumer. That is because the consumer has a better
understanding of the information need at the consumption side.
This is also aligned with scenarios where the event producer has
little assumptions on information needs of the consumers and
where decoupling is the norm. This adds to our previous work on
loose semantic coupling and approximate matching in event
processing systems [14].

Consequently, the model suggests that the enrichment element co-
exists with the matching element which forms subscriptions in
current systems. The resulting subscription which contains
enrichment and matching elements is called a unified
subscription.

By having unified subscriptions, enrichment can be brought to the
core of the event processing engine. It operates based on the
enrichment element and uses the matching element to conduct an
enrichment process over the incoming incomplete events and
enrichment source(s) to produce enriched events that can then be
matched against the matching element. It is called a native
enricher in this model. While implementation details of the
enricher are left to particular instantiations, the proposed model
suggests that the enricher not only uses the enrichment clauses to
operate, but also the matching element to guide the enrichment
process. Figure 1 depicts the proposed enrichment model.

Figure 1. Unified and native enrichment model

Example 4 presents a simple instantiation of the enrichment
clauses and the native enricher.

Example 4: Instantiation for Plain Text Events

Events are represented as bags of words. Let an event be as
follows:

{“energy”, “consumption”, “heater1”, “high”}

Let the matching element of subscriptions be represented as a bag
of words as follows:

{“energy”, “second”, “floor”, “high”}

The semantics of the event matching is that all words in the
matching element need to be found in the event for a positive
match, otherwise it is a negative match.

We assume that the enrichment source for the system is an
enterprise wiki of text articles called enterprise-wiki. The wiki
contains an article titled “second floor” which contains the term
“heater1”. The wiki can be searched via a term search API which
returns a list of articles containing the term. The API is accessible
via a RESTful web service. When the API is searched with the
term “heater1” the article titled “second floor” is returned.

The enrichment clauses are defined as the following:

 ENRICH FROM specifies the name of the wiki.

 RETRIEVE BY specifies the access protocol.

 FIND BY specifies the search mechanism.

 FUSE BY defines the fusion method to extract words from
the retrieved article’s title or from the article content, and if
to add the new words to the event or to replace its words by
the new found words.

A full example unified subscription becomes:

ENRICH FROM ‘enterprise-wiki’.

RETRIEVE BY ‘HTTP GET’.

FIND BY ‘term search’.

FUSE BY ‘title terms’ ‘add’.

{“energy”, “second”, “floor”,
“high”}.

When the event {“energy”, “consumption”, “heater1”, “high”}
arrives to the system, the native enricher uses the words in the
event to search the enterprise-wiki using each word at a time.
Assuming that the enricher firstly retrieves the article titled
“second floor”, it extracts the single words from the article’s title
and adds them to the event. The enriched event becomes as
follows:

{“energy”, “consumption”, “heater1”, “high”, “second”,
“floor”}

Other articles are retrieved and fused similarly. The matching
element is then evaluated against the enriched event. As a result,
the matcher finds a positive match.

4.1 Formalism
The model is represented using the quadruple (L, E, ES, U),
where:

 L is the unified subscription language.

 E is the set of events.

 ES is a set of information items that form the source of
enrichment.

 U is the universe which contains all the possible information
items.

Figure 2. The universe U, the event e, the enrichment source
ES, the world W, the enrichment view HVS, and a matching

view MVS

The model has two underlying assumptions concerning valid
information items and common information items. Valid
information items are those which are considered to be true facts.
Given an event e E, we assume that the only valid information
items are those which exist in the event e or in the enrichment
source ES. In other words, this assumption is equivalent to a
Closed World Assumption (CWA) where the world W=e ES. In

fact, it is worth mentioning that traditional event processing
systems usually make a closed world assumption at the matching
stage, where the world W=e. The principal assumption that the
world is limited to the event causes the incorrect decisions of the
matcher in judging many positive and negative matches.

The other assumption concerns common information items
between events and the enrichment source. We assume that there
is no intersection between the content of e and ES, i.e. e ES
=Φ . The purpose of this assumption is to simplify the description
of the model. However, in reality the event may have been
published with some information items that also exist in the
enrichment source. Nevertheless, the model is easily extended to
the case where e ES Φ . When conducting enrichment in
practice, the information items in ES which are already in e can
simply be discarded to turn the assumption into a valid
assumption. Figure 2 illustrates the various concepts of the model.

Let S be a subscription in L, S is a pair (HS, MS), where:

 HS is the enrichment clauses element of S.

 MS is the matching predicates element of S.

The model is described through the following definitions.

Definition 1: Boolean Matching Element

Let S be a unified subscription and I a set of information items:

elementmatchingBooleanaisM S

},{)(FalseTrueIM S

(1)

Definition 2: Approximate Matching Element

Let S be a unified subscription and I a set of information items:

elementmatchingeapproximatanisM S

)(IM S

(2)

Definition 3: Unknown Matching Result

Let S be a unified subscription and I a set of information items:

UnknownIM S)(

elementmatchingBooleanaisM S(

}),{)(FalseTrueIM S

elementmatchingeapproximatanisM S(

))(IM S

(3)

Definition 4: Matching View

Let S be a unified subscription and I a set of information items:

IonSofviewmatchingaisMVS

UnknownIMVM SS))((

(4)

Definition 5: Enrichment View

Let S be a unified subscription and I a set of information items:

IonSofviewenrichmentanisHVS

},:{)(enrichmentduringretrievedisiiIiiiiIHVS

(5)

Definition 6: Complete Event

Let S be a unified subscription and e an event from E:

e is complete with respect to MS

(W))(MVM(e))(MVMMV SSSSS where

(6)

Definition 7: Enriched Event

Let S be a unified subscription, e an event from E, ES the
enrichment source, HVS the enrichment view of the HS element of
S, the FUSE BY operator of HS:

SHtoaccordingeeventofeventenrichedtheisee

)(UHVeee S

(7)

Definition 8: Valid Enrichment

Let S be a unified subscription, e an event from E, ES the
enrichment source, HVS the enrichment view of the HS element of
the unified subscription S:

validis(U)HVS
 Φ(W)HV\(U)HV SS (8)

Definition 9: Successful Enrichment

Let S be a unified subscription, e an event from E, ES the
enrichment source, HVS the enrichment view of the HS element of
S, the FUSE BY operator of HS:

successfulis(U)HVS
 validis(U)HVS

SS Mtorespectwithcompleteis(U)HVe

(9)

Definition 10: Minimal Successfully Enriched Event

Let e be and event from E and ES be the enrichment source. Let

S1, S2… Sn be a set of unified subscriptions in L where the
matching element of all of them is the same MS, while they vary
in the enrichment elements being HS1, HS2… HSn respectively. Let
HVS1, HVS2... HVSn

 be the set of enrichment views corresponding
to the subscriptions. Let ee1, ee2… een be the enriched events of e
according to the enrichment views respectively:

eventenrichedlysuccessfulminimalaiseek

Skk Mtorespectwithcompletenotiseeiiiiee }:{\

(10)

An ideal event enrichment process would always turn events into
minimal successfully enriched events. Ideally the areas in Figure
2 of MVS(W) and HVS(W) would be identical for at least one MVS.
Besides, the enrichment view would be valid, i.e. HVS(W)=
HVS(U). Thus, the areas A1, B1, A2, B2, AB2, A3, and B3 become all
empty. The definition above can be interpreted as a hard
constraint, meaning that an enrichment process is considered
successful for an event only if it produces a minimal successfully
enriched event. This interpretation is suitable in many cases such
as when the matching element MS is a Boolean matching element.

However, there are cases where the event processing system may
accept approximation. One example is when the matching
element MS is an approximate matching element. In such cases, it
is suitable to adapt definition 10 to a softer interpretation, leading
to Definitions 11 and 12.

Definition 11: Cost of Transformation into a Minimal
Successfully Enriched Event

Let e be an event from E and ES the enrichment source ES, let S1,

S2… Sn be a set of all possible subscriptions in L where the
matching element of all of them is the same MS, while they vary
in the enrichment elements being HS1, HS2… HSn respectively. Let
eem1, eem2… eemk be the set of minimal successfully enriched

events of e according to the various enrichment clauses elements
HS1, HS2… HSn. Let S be a subscription with the enrichment
element HS. Let ee be the enriched event of e according to Hs. We
define the cost function MSECost as follows:

{0} WW:MSECost (11)

mimi eeintoeeturntocostmintheis)(ee,eeMSECost (12)

0)ee,(eeMSECost mimi
 (13)

Definition 12: Approximately Minimal Successfully
Enriched Event

Let ee be a successfully enriched event and eemi any minimal
successfully enriched event:

ee is an approximately minimal successfully enriched
event 0))(ee,ee(MSECostMin mieemi

(14)

4.2 Implications
This section discusses three of the potential implications of the
proposed model:

 Sharing and Re-usability of Enrichment Elements: This
stems from the core concept of recognizing enrichment
routines as separate and modular declarative language
elements. In deployments where a large number of producers
and consumers exist, it is possible that only a small set of
consumers would have the knowledge and expertise to
provide well defined enrichment elements along with
matching elements through unified subscriptions. Other
consumers will keep writing classical matching subscriptions
without specifying enrichment logic. This forms an
opportunity for the event processing engine to enrich events
according to the provided enrichment routines by expert
users and forward the enriched events to normal users who
would get more complete events.

 Distribution of Enrichment: When the event processing
system is distributed into a set of brokers, there is an
opportunity to distribute enrichment elements on the nodes
to achieve an optimal overall completeness. With a suitable
algebra for enrichment elements, coverage and ordering
relationships can be defined for enrichment elements to
avoid redundant enrichment and to account for optimized
distributed enrichment plans.

 Approximation in Event Processing Engines: Building on
the case when enrichment is done automatically by native
enrichers may introduce some approximately complete
events rather than fully complete events. Matching over
partially complete events would need to account for the still
missing information. This provides a good motivation for
approximate matching in event processing systems which
was investigated previously by the authors [14] based on the
need for loose semantic coupling in heterogeneous systems.

These implications and others are subject to further investigation
in the future.

5. A LINKED DATA INSTANTATION OF
THE EVENT ENRICHMENT MODEL
This section details the implementation of the proposed model
(refer to Figure 2): the event model, the enrichment source model,
the matching element of subscriptions and the enrichment element

along with a native enricher. The instantiation is designed for
Linked Data events. Linked Data along with its core RDF graph
model can be seen as a generic model for events, making the
concepts applied in this instantiation also applicable in other
implementations. A large amount of openly accessible Linked
Data has been published on the web in the recent years making it
easier to experiment with Linked Data events to study the
enrichment model. Linked Data has also been used as a
mechanism to link contextual data within different domains
including finance, life sciences, public sector and energy [8].

5.1 Event Model
Events are instantiated as Linked Data events. Thus, an overview
of Linked Data is given before proceeding.

Linked Data

Emerging from research into the Semantic Web, Linked Data
proposes an approach for information interoperability based on
the creation of a global information space. Linked Data leverages
the existing open protocols and standards of the World Wide Web
(WWW) architecture for sharing structured data on the web. The
overall objective of Linked Data is to provide flexible data
publishing and consumption. Berners-Lee [3] summarizes Linked
Data in four principles:

1. Using URIs as names for things.

2. Using HTTP URIs so that people can look up those names.

3. When someone looks up a URI, providing useful information
using standards such as RDF [17].

4. Including links to other URIs so that people can discover
more things.

Event Model

An event is instantiated as a labelled directed graph. The resource
description framework (RDF) is used to represent information
about events using statements or triples. A statement consist of a
(subject, property, object) triple. Subjects are references to
information resources and are represented as URIs. Objects may
be URIs or literal values. Properties come from various
vocabularies (the RDF name of ontologies) and are represented as
URIs of terms in these vocabularies. One subject may have
multiple statements with the same property and different objects.

The resulting event can be represented as follows: Let E be the set
of events conforming to the event model, P the set of properties,
URIs the set of all URIs and Lit the set of all Literals such as
strings and numbers, then an event can be seen as a finite set of
triples as follows:

Lit)}(URIsPURIsv)p,(s,:v)p,{(s,eEe (15)

Figure. 3. An example event

A URI can be written using prefixes for clarity. For example the
URI http://www.example.com#event can be written as
example:event with the prefix example representing the part
http://www.example.com. Figure 3 illustrates an example event
where ont represents a prefix for the vocabulary of terms in the
energy domain, devices a prefix for instances of devices in the
environment, and events a prefix for all event instances.

5.2 Enrichment Source Model
The enrichment source is instantiated as a labelled directed graph.
RDF is used to represent enrichment information. The enrichment
source is a set of triples (subject, property, object) following the
Linked Data principles. Let ES be the enrichment source, P the set
of properties, URIs the set of all URIs and Lit the set of all
Literals such as strings and numbers then:

Lit)}(URIsPURIsv)p,(s,:v)p,{(s,ES (16)

Figure 4 illustrates an example enrichment source where building
is a prefix for instances such as rooms and floors.

Figure. 4. An example enrichment source

The enrichment source is assumed to be accessible by
dereferencing URIs associated with it. Dereferencing a URI
means sending an HTTP request to its host, specifying the content
type to be returned such as RDF, and finally receiving the HTTP
response. The validity of a triple as required by Definition 8 is
judged by its existence in the event or in the enrichment source.

5.3 Matching Element Model
The instantiation of the matching element of a subscription is a
simplified version of the SPARQL patterns [23] which can
contain basic graph patterns with variables. The matching element
uses property paths in the place of properties to describe a regular
expression of properties, or a path. The matching element is a
Boolean matching element as defined in Definition 1. A matching
view as defined in Definition 4 is the set of all triples that forms a
solution to the graph pattern. Example 5 presents an example
matching element.

Example 5: A Matching Element

The following matching element matches any event of type
energy consumption whose URI has a path to the second floor
URI within three nodes:

?event rdf:type ont:EnergyConsumption.

?event (?p){3} building:SecondFloor.

5.4 Enrichment Element Model
The instantiation of the enrichment element of a subscription is as
follows:

 ENRICH FROM specifies the domain URI of the enrichment
source.

 RETRIEVE BY specifies dereferencibility as the method for
retrieval, notated as DEREF.

 FIND BY specifies how to explore the enrichment source to
find complementary information. We propose a spreading
activation strategy to be used by the enricher as explained in
Section 5.5. The enrichment view defined in Definition 5 is
the set of all triples whose subjects are activated during the
spreading activation.

 FUSE BY realizes the operator of the model presented in
Definition 7. The RDF UNION is a suitable instantiation.

Example 6 presents a unified subscription that enriches from an
enterprise Linked Data cloud, retrieves by dereferencibility, finds
via a spreading activation strategy called
UniformWeightsAllAdjacent and fuses via union. It aims at
matching any event of type energy consumption whose URI has a
three-links path to the “second floor.”

Example 6: A Unified Subscription

ENRICH FROM <www.myenterprise.org>

RETRIEVE BY ‘DEREF’

FIND BY ‘Spreading Activation’

 ‘UniformWeightsAllAdjacent’

FUSE BY ‘UNION’

{?event rdf:type ont:EnergyConsumption.

?event (?p){3} building:SecondFloor.}

The minimality of enriched events as defined in Definition 8 is
realized by removal of triples from an enriched event. Finally, the
approximation between an enriched event and a minimal
successfully enriched event defined by the function MSECost in
relations (11), (12) and (13) is realized by the cardinality of the
relative complement operation ‘\’ on sets of triples. Thus, the cost
to turn an enriched event ee into a minimal successfully enriched
event eem is composed of two costs:

 The cost to include all the successful enrichment triples in
eem into ee. That is equivalent to |eem\ ee|.

 The cost to remove all unnecessary enrichment triples from
ee. That is equivalent to |ee\ eem|.

The first point measures the completeness while the second
measures the precision. These two measures and their
combination form the basis for evaluation as shown in Section 6.

5.5 Native Enricher
The enrichment model is realized through a spreading activation
algorithm [5]. Spreading activation (SA) originated in cognitive
psychology as a network processing model for a supposed model
of human memory. Applications of SA can be found in Artificial
Intelligence, Cognitive Science, Databases, Information Retrieval,
etc. The pure spreading activation model incorporates a
processing technique for a generic graph data structure such as the
RDF graphs. It is based on the idea of marking some nodes as
active and then spreading the activation into other nodes
iteratively. The way that spreading takes place and the semantics
of the active nodes depends on the application. The processing is
defined by a sequence of iterations that continue until a
termination condition is activated. Each iteration consists of one
or more pulses and a termination check [6].

Each pulse of the spreading activation consists of three stages:
pre-adjustment, spreading and post-adjustment [6]. The spreading
phase consists of a number of activation waves where each node

calculates activation inputs transferred to it from its neighbors,
which can be done using the formula:

ij
i

ij wOI (17)

Where Ij is the total input to node j, Oi is output of neighbor i and
wij is a weight associated with the edge from node i to node j.
When a node computes its total input Ij it calculates its output Oj
as a function of Ij:

Oj = f(Ij) (18)

The function can be simply a threshold function which decides if
the node j is activated or not. The output of the node is in turn
sent to neighboring nodes in the next pulse and so on. Activation
spreads from the initially activated nodes to further nodes in the
network. Pure SA may fall in a deadlock and run forever unless
controlled. Constraints can be enforced in the pre-adjustment
stage. Four sorts of constraints can be recognized [6]:

 Distance Constraint: The SA should decay as it reaches
nodes far from the initially activated nodes.

 Fan-out Constraint: The SA should cease at nodes with
very high connectivity.

 Path Constraint: The SA should be selective in the path it
spreads in making use for example of the semantics of labels
on the edges.

 Activation Constraint: Using various thresholds can affect
the behavior of the SA.

Spreading activation within the enricher along with the Linked
Data instantiation of the event and the enrichment source models
can realize the enrichment model. Spreading Activation can be
used to explore the enrichment source and retrieve a set of triples
to be fused in the event. In order to guide SA in the enrichment
source, we propose a path constraint to favor some links over the
others. The path constraint that we propose is based on ranking
the links connected to a spread node based on their semantic
relatedness with terms in the matching element and then just
follow the top two or three links. The semantic relatedness used in
the experiment is a WordNet-based measure called the Path
measure. More on WordNet and semantic measures can be found
in [4].

6. EXPERIMENT
In order to demonstrate how to evaluate a particular instantiation
of the proposed enrichment model, an experiment has been
conducted in association with the Linked Data instantiation of the
enrichment model described in Section 5. The experiment has
been done on real-world data, namely events extracted from
Wikipedia, and uses the DBpedia dataset as an enrichment source.

A set of event subscriptions is generated where each subscription
conforms to the unified language instantiation in Section 5.
Matching elements use the property path variables to express a
path of predicates between an event and a value. The minimal
successfully enriched events for each subscription are calculated
in order to form a baseline to measure the effectiveness of
enrichment.

The purpose of the experiment is to compare three strategies of
event enrichment which vary the mechanism used by the enricher
to find complementary information items in the enrichment
source. The variation is expressed by different parameters to the

spreading activation algorithm in the FIND BY clause of the
subscription enrichment element. The three strategies are:

 UniformWeightsAllAdjacent: A spreading activation
strategy where activation from one node spreads equally to
all adjacent nodes.

 UniformWeightsRandomAdjacent: A spreading activation
strategy where activation from one node spreads equally to a
random set of adjacent nodes.

 DifferentWeightsSemRel: A spreading activation strategy
where activation from one node spreads unequally to a set of
adjacent nodes based on the semantic relatedness of the
adjacency edges and the terms in the matching element of
the subscription.

The key difference between the evaluated strategies is that the
former two guide enrichment independently from the matching
element of the subscription while that last strategy actually
benefits from the fact that enrichment logic and matching logic
exist together in the unified subscription. The last strategy guides
the enrichment algorithm according to semantic relatedness
between the terms in the matching element and terms on the links
in the enrichment source. Thus, the last strategy, if confirmed to
perform better than the other two, proves that a unified
subscription with enrichment and matching together unified and
native to the event processing engine is a beneficial approach to
event enrichment.

It is worth mentioning that the objective is not to investigate the
best approach for enrichment in the particular Linked Data
instantiation but rather to demonstrate how evaluation can be
conducted. Investigating the best performing enrichment
strategies for Linked Data events is indeed an important future
direction.

6.1 Event Set and Enrichment Source
The event set used in this experiment is a structured
representation of events in Wikipedia1. DBpedia [2] is a
community project to extract structured information from
Wikipedia. DBpedia is one of the efforts under the Linked Open
Data initiative which targets the publication of structured data on
the web according to the Linked Data principles [3]. The data
model used to represent DBPedia data is RDF. The event set used
for this experiment is a subset of the current version the English
DBpedia2. It contains all resources of type dbpedia-
owl:Event. Each event is a triple of the form <eventURI,
rdf:type, dbpedia-owl:Event>.

The size of the event set is around 24,000 events. Examples of
various event types found in the event set are: “Football Match”,
“Race”, “Music Festival”, “Space Mission”, “Election”, “10th-
century BC Conflicts”, “Academic Conferences”, “Aviation
Accidents And Incidents In 2001”, etc.

The enrichment source is the set of all triples that are stored on
the online DBpedia and can be retrieved by looking up DBpedia
resource URIs. Events are played sequentially and pushed to the
native enricher which searches the enrichment source for
complementary information, fuses it with the events and forwards
them to the event matcher.

1 http://www.wikipedia.org/
2 http://downloads.dbpedia.org/3.8/en/. Last modified on the 1st of

August 2012. Accessed on 25th of February 2013.

6.2 Unified Subscription Set
The subscription set consists of four subscriptions. The matching
element of subscriptions was automatically generated using the
following method:

1. We start by the seed URI of the 1966 FIFA World Cup Final
http://dbpedia.org/resource/1966_FIFA_World_Cup_Final
and retrieve resources linked to it to build a path-shaped
graph of 4-triples long. Figure 5 shows the resulting full
path-shaped graph.

2. For the first subscription, we pick the first triple and consider
it as the matching element.

3. For the second subscription, we pick the first two triples and
construct a matching element as defined in Section 5 using
the two terminal URIs of the two-triples long path as subject
and object and a property path variable in between.

4. We repeat the last step for subscriptions 3 and 4.

Figure 5. The base path-shaped graph used to generate the
matching elements of the subscriptions

The resulting matching elements are shown in Table 1.
Subscriptions range in complexity with respect to the length of
the property path in their matching elements with the most
complex subscription being the one with the longest property
path. To form the final unified subscriptions, each matching
element is concatenated with an enrichment element which
consists of the four clauses ENRICH FROM, RETREIVE BY,
FIND BY and FUSE BY. The evaluated three strategies are
passed as parameters to the FIND BY operator.

Table 1. Matching elements of the unified subscription set

ID Matching Element
1 ?event rdf:type dbpedia-owl:Event.

 ?event (?p){1}
 dbpedia:England_national_football_team.

2 ?event rdf:type dbpedia-owl:Event.
 ?event (?p){2}
 dbpedia:Queens_Park_Rangers_F.C..

3 ?event rdf:type dbpedia-owl:Event.
 ?event (?p){3}
 dbpedia: Loftus_Road.

4 ?event rdf:type dbpedia-owl:Event.
 ?event (?p){4}
 dbpedia: Fulham_F.C..

6.3 Minimal Successfully Enriched Events
Construction
In order to generate the event data that can be considered a
minimal successfully enriched event with respect to each
subscription, the following methodology has been used:

For each matching element of a subscription, a SPARQL [23]
query is formed and executed against the DBpedia online
SPARQL API. The query uses optional joins and filters to match
all the events in DBpedia with all possible cases of their
associated values or predicates. Example 7 shows the generated
query for subscription 3.

Example 7: A Generated SPARQL Query

SELECT DISTINCT ?event ?team ?club

WHERE

 {?event a dbpedia-owl:Event .

 OPTIONAL

 {?event dbpedia-prop:team ?team .

 FILTER (!isLiteral(?team))

 OPTIONAL

 {?team dbpedia-prop:team ?club .

 FILTER (!isLiteral(?club))}}}

When the SPARQL queries are executed, the result contains all
the events with possible values for the specified path. These
events with their associated data are minimally complete as a
matching decision can be made upon them for the specified
subscription.

6.4 Evaluation Criteria
Given a subscription S and an event e. Let ee be the enriched
event of e according to S. Let em be the closest minimal
successfully enriched event to ee according to relations (11), (12)
and (13) and their instantiation in Section 5.4. We define the
following metrics for evaluating the effectiveness of the
enrichment approach:

m

m

e

eee
ssCompletene

(19)

ee

eee
isionPre m

c
(20)

ssCompletenePrecision*5

ssCompletenePrecision**)5(1
ScoreF

2

2

5

(21)

The intersection is realized via an intersection between the set of
triples that form each graph ee and em. The cardinality of events
here is realized through the number of triples in the set that
corresponds to each graph. The F-Score is a composite measure
which is useful to summarize the effectiveness of an enrichment
approach in one number for a subscription rather than two
numbers. We argue that completeness and precision are not
equally important. To evaluate an enrichment approach based on
information completeness, the completeness measure should be
given more weight. That is why the F5Score is chosen in this
evaluation. Depending on the application domain and constraints,
other weighting may be considered.

6.5 Results
Figure 6 illustrates the combined F5Score achieved by each
enrichment approach for each subscription and averaged on
events. The chart shows the superiority of the semantic
relatedness-based approach and confirms the hypothesis that an
enrichment approach which makes benefit from the enrichment
logic unified with the matching logic is more effective than
enrichment that is only based on enrichment logic.

There is also a trend showing that the enrichment effectiveness
decreases for more complex subscriptions. The decreasing
effectiveness is due to the fact that a longer property path requires
more spreading to reach relevant triples while spreading may fade
before that. From an empirical perspective, this raises the issue
that the evaluation of an enrichment approach shall factor in the
effect of the several types and complexities of subscriptions in the
results. It is noticeable that the trend is sometimes broken on
subscriptions 2 and 4 for some approaches. This is due to the
small sample of subscriptions that represent each complexity level
used in the experiment. A larger number of subscriptions is
supposed to make the trend more apparent.

Figure 6. The combined F5Score achieved by the enrichment
approaches for each subscription

7. RELATED WORK
Related work to the event enrichment problem can be found in the
event processing and middleware community as well as work in
the database community on incompleteness. Hinze et al. [15]
recognizes event enrichment among the features most required by
event-enabled applications. Nevertheless, event enrichment is still
widely addressed by ad-hoc dedicated agents which are tailored
specifically to some situations. This is reflected in the set of
enterprise integration patterns presented in [16]. Such approaches
are non-native to the event processing paradigm where
enrichment behaviour is pushed to the end user and less integrated
with the rest of the features of event processing engines.

There are several research efforts to address the challenges of
integrating background knowledge bases with event streams.
Teymourian et al. [25] describes an approach based on a
SPARQL-based query language where queries refer to event
streams as well as the knowledge base. The authors recognize a
set of categories of queries according to which they propose a set
of execution plans. Similarly, Le-Phuoc et al. [18] proposes an
approach to unify streams and background knowledge using
Linked Data. They investigate methods to optimize the

continuous queries over the resulting dynamic Linked Data based
on cost-based optimization within time windows. Both
approaches form good examples of efforts to address the need for
using background knowledge bases with event-based systems.
However, some assumptions are already made in these
approaches such as the access mechanism to the knowledge base,
the data models and the feasibility of using join operators. These
assumptions may not hold in some situations and thus the event
enrichment problem is not addressed natively within the event-
processing paradigm.

While enrichment is generally understood as a process to fuse
data from an external source with the events, there has been some
work which tackled other aspects of enrichment. Petrovic et al.
[22] proposes an approach to semantically match events with
subscriptions. At one stage of the proposed system, events get
enriched with synonyms of the terms that are used within the
events. Such enrichment is interesting as it shows the semantic
dimension of the problem. However, the approach does not tackle
the enrichment problem in the general terms.

Some work from the database community identifies the problem
of incomplete databases and incomplete queries. While the
proposed approaches are more attached to databases in general
and the relational model in particular, it still gives good insight on
the problem. Some focus on missing tuples and missing values
such as [12]. Some are more aligned to the query answering
perspective such as [19] and [24]. While other works focus on
improving the quality of incomplete databases [21].

8. CONCLUSIONS
This paper discussed the information incompleteness problem in
event processing systems due to the decoupling principle. The
dimensions of event incompleteness have been discussed along
with challenges to overcome the incompleteness issue. A model
for event enrichment has been proposed. The model is based on
unifying enrichment within the event consumer logic and a native
enricher that tackles incompleteness before matching. To validate
the model, an instantiation using Linked Data events and a Linked
Data cloud as an enrichment source has been discussed. The
instantiation proposes spreading activation as a potential
enrichment approach. Various strategies of spreading activation
have been evaluated using a set of Wikipedia events and DBpedia
as the enrichment source. Evaluation has been done using a
composite completeness and precision measure and it showed a
superiority of the spreading activation strategy that is based on
semantic relatedness over the other two approaches. This
indicates the benefit of the unified subscription model.

The proposed model has implications on various aspects of event
processing. Namely, sharing and re-usability of enrichment
elements which may help improve the overall information
completeness of events, distribution of enrichment which can
improve the overall enrichment time, and approximation in event
processing systems.

Future work includes further investigation of the aforementioned
implications, investigating proper optimization approaches for the
native enricher such as caching and indexing is of potential
importance in real-time situations. The same also applies to
optimizing the precision aspect of enrichment where higher
precision means less unnecessary retrieval operations and thus a
better performance. Additionally, improvement of enrichment
approaches and algorithms for specific instantiations is important
to improve the completeness, precision and time performance.

9. ACKNOWLEDGMENTS
This work has been funded by Science Foundation Ireland under
Grant No. SFI/08/CE/I1380 (Lion-2).

10. REFERENCES
1. Atzori, L., Iera, A., and Morabito, G. The internet of things: A

survey. Computer Networks 54, 15 (2010), 2787–2805.

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R.,
and Ives, Z. DBpedia: A Nucleus for a Web of Open Data.
The Semantic Web 4825, (2007), 722–735.

3. Berners-Lee, T. Linked Data- Design Issues. 2006.
http://www.w3.org/DesignIssues/LinkedData.html.

4. Budanitsky, A. and Hirst, G. Evaluating wordnet-based
measures of lexical semantic relatedness. Computational
Linguistics 32, 1 (2006), 13–47.

5. Collins, A.M. and Loftus, E.F. A spreading-activation theory
of semantic processing. Psychological review 82, 6 (1975),
407.

6. Crestani, F. Application of spreading activation techniques in
information retrieval. Artificial Intelligence Review 11, 6
(1997), 453–482.

7. Curry, E., Hasan, S., and O’Riain, S. Enterprise Energy
Management using a Linked Dataspace for Energy
Intelligence. Second IFIP Conference on Sustainable Internet
and ICT for Sustainability, IEEE (2012).

8. Curry, E., O’Donnell, J., Corry, E., Hasan, S., Keane, M., and
O’Riain, S. Linking building data in the cloud: Integrating
cross-domain building data using linked data. Advanced
Engineering Informatics 27, 2 (2012), 206–219.

9. Curry, E. Message-Oriented Middleware. In Q.H. Mahmoud,
ed., Middleware for Communications. John Wiley and Sons,
Chichester, England, 2004, 1–28.

10. Etzion, O. and Niblett, P. Event Processing in Action.
Manning Publications Co., 2010.

11. Eugster, P.T., Felber, P.A., Guerraoui, R., and Kermarrec,
A.M. The many faces of publish/subscribe. ACM Computing
Surveys (CSUR) 35, 2 (2003), 114–131.

12. Fan, W. and Geerts, F. Capturing missing tuples and missing
values. Proceedings of the twenty-ninth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database
systems, (2010), 169–178.

13. Hasan, S., Curry, E., Banduk, M., and O’Riain, S. Toward
Situation Awareness for the Semantic Sensor Web: Complex
Event Processing with Dynamic Linked Data Enrichment. The
4th International Workshop on Semantic Sensor Networks
2011 (SSN11), (2011), 60–72.

14. Hasan, S., O’Riain, S., and Curry, E. Approximate Semantic
Matching of Heterogeneous Events. 6th ACM International
Conference on Distributed Event-Based Systems (DEBS
2012), ACM (2012), 252–263.

15. Hinze, A., Sachs, K., and Buchmann, A. Event-based
applications and enabling technologies. Proceedings of the
Third ACM International Conference on Distributed Event-
Based Systems - DEBS ’09, (2009), 1.

16. Hohpe, G. and Woolf, B. Enterprise integration patterns:
Designing, building, and deploying messaging solutions.
Addison-Wesley Professional, 2004.

17. Klyne, G. and Carroll, J.J. Resource Description Framework
(RDF): Concepts and Abstract Syntax. 2004.
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

18. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., and
Hauswirth, M. A native and adaptive approach for unified
processing of linked streams and linked data. The Semantic
Web--ISWC 2011, Springer (2011), 370–388.

19. Levy, A. Obtaining complete answers from incomplete
databases. Proceedings of the International Conference on
Very Large Data Bases, (1996), 402–412.

20. OECD. Machine-to-Machine Communications: Connecting
Billions of Devices. OECD Digital Economy Papers No. 192,
2012.

21. Parssian, A., Sarkar, S., and Jacob, V.S. Assessing
information quality for the composite relational operation
join. Proc. Seventh Int’l Conf. Information Quality, (2002),
225–237.

22. Petrovic, M., Burcea, I., and Jacobsen, H.-A. S-ToPSS:
semantic Toronto publish/subscribe system. Proceedings of
the 29th international conference on Very large data bases -
Volume 29, VLDB Endowment (2003), 1101–1104.

23. Prud’Hommeaux, E. and Seaborne, A. SPARQL query
language for RDF. W3C working draft 4, January (2008).

24. Razniewski, S. and Nutt, W. Checking query completeness
over incomplete data. Proceedings of the 4th International
Workshop on Logic in Databases, (2011), 32.

25. Teymourian, K., Rohde, M., and Paschke, A. Fusion of
background knowledge and streams of events. Proceedings of
the 6th ACM International Conference on Distributed Event-
Based Systems, ACM (2012), 302–313.

